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Determination of minimum-dissipation states with self-consistent resistivity in magnetized plasmas
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A calculation of minimum-dissipation states is presented, where the resistivity profile is made con-
sistent with the resulting current and magnetic-field profiles. Helicity balance and constant toroidal flux
are imposed as constraints, and it is assumed that the resistivity and thermal conductivity have a classi-
cal dependence upon temperature, with a constant factor multiplying the latter to account for anomalous
heat transport. Our results are in general agreement with the profiles expected for reversed field pinches.
An iterative method is employed to calculate the resistivity and current and magnetic-field profiles that

minimize the dissipation.

PACS number(s): 52.30.Jb, 52.55.Hc, 52.65.+z

A number of variational principles have been used in
plasma physics to calculate the current and magnetic
field profiles of relaxed, weakly turbulent plasmas. The
minimum-energy principle [1] has been successful at ex-
plaining many aspects of the behavior of space and labo-
ratory plasmas but does not allow for the inclusion of the
resistivity. Thus it is impossible to include, within the
framework of this model, all the effects associated with
nonuniformities in the resistivity profile. In addition, it
has been argued that the applicability of this principle to
plasmas sustained in quasi-steady-state is questionable
[2,3].

Two related principles, minimum rate of entropy pro-
duction [2] and minimum rate of energy dissipation [3],
have recently been proposed for dissipative plasmas sus-
tained in quasi-steady-state. The latter has gained con-
siderable acceptance and has been employed to calculate
the current and magnetic-field profiles of plasmas sus-
tained by the standard inductive method [3-6] and by
helicity injection [7]. Although the resistivity appears ex-
plicitly in this model the situation is not completely satis-
factory because its magnitude, whether uniform or vari-
able, is taken as an external parameter independent of the
current and magnetic-field profiles.

In this paper we present a model where the resistivity
profile is made consistent with the current and magnetic-
field profiles that minimize the dissipation rate. For sim-
plicity we consider the case of an infinitely long plasma
cylinder enclosed by a perfect conductor and sustained by
an externally applied longitudinal electric field. In addi-
tion, we consider only cylindrically symmetric states
(0/06=0) and assume that the resistivity and thermal
conductivity have their classical temperature dependence
(with the latter multiplied by a constant factor to account
for anomalous effects). This last assumption could be
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easily modified allowing for the use of different transport
models.

We assume that the zero-order flow velocity is negligi-
ble and minimize the Ohmic dissipation rate subject to
the constraints of helicity balance and constant toroidal
flux. This is the same situation, except for the treatment
of the resistivity, considered in Sec. III of Ref. [6]. We
employ cylindrical coordinates and normalize the electric
and magnetic fields, current density, and plasma radius in
a similar fashion as in Ref. [6]. For the resistivity, how-
ever, we take 7, =27, and normalize with 7 (r =0)=1,.
Unless otherwise indicated normalized quantities are em-
ployed from now on.

The constant toroidal flux constraint can be written as

2fBzxdx=1, x=r/a . (1)
The helicity balance constraint results in
2 [7j-Bx dx=E , )

where B and j are related through Ampere’s law, E is the
applied electric field, and the resistivity 7, which is a
function of x, will be calculated later. The Ohmic dissi-
pation rate is

Po=2] —g;[(j-B)2+2lj><B|2]x dx . 3)

Using Egs. (1)-(3), we introduce the following function-
al:

W=2f7;7;[(j-13)2+2(jx1;|2]x dx
—A [2fnj-Bx dx—E]——a [2fBzx dx —1 } ,

where A and a are Lagrange multipliers associated with
helicity balance and constant toroidal flux respectively.

The current and magnetic-field profiles that minimize
the Ohmic dissipation rate with the constraints given
above are obtained by setting the first variation of W
equal to zero,
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SW=0. 4)

Of course, it is necessary to check that the solution of Eq.
(4) actually corresponds to a minimum; this is done by
comparing the calculated dissipation with that corre-
sponding to neighboring solutions. At this point the
standard procedure would consist in solving the Euler-
Lagrange equations obtained from (4) with a prescribed
resistivity profile. Since we want to use a resistivity
which is consistent with the resulting current and
magnetic-field profiles an additional equation relating 7
to j and B is needed.

The resistivity profile is determined from momentum
and energy considerations involving the plasma pressure,
density, and temperature. We assume that the plasma
satisfies the following steady-state heat-diffusion equation

[8]:
V-(xVT)+Q=0, (5)

where y is the thermal conductivity, T the temperature,
and Q the local heating rate. Note that Q is the
coefficient of x in the integrand of Eq. (3). For y we em-
ploy the classical ion thermal conductivity, which is
much larger than the corresponding electron conductivi-
ty, multiplied by a factor f which accounts for anoma-
lous effects. Typical values of f are between 30 and 100
for a reversed field pinch (RFP) [8]. Using SI units (tem-
perature in eV) we write Y as

C n?
=t cx=1.6x10—4°,.¢1/2%1m . ©)
Since there are three unknowns (n, T, and B) and only
two equations [Eqgs. (4) and (5)] we need an additional
equation to close the system. We assume that there is
force balance and hence Vp=3jXB. This allows us to
calculate the pressure profile by integrating (jXB),.

Having the pressure we can write the density as
n=p/kgT , (7

where kj is the Boltzmann constant.
The resistivity is also assumed to have its classical tem-
perature dependence

— n —_ —4
M=z Cy=0.515X107*Z InA . ®

Normalizing the pressure with py/{B, )2, where (B, ) is
the mean toroidal field, the temperature with
T (x =0)=T, and substituting Egs. (6)—(8) in Eq. (5) we
obtain the following equation for the normalized resistivi-
ty:

d’y , dn
dx? dx

jXB

p

_2dB

1
+2 B dx

X

— AN (i BR+2ixBP1=0, ©)
p

where 4=1.5C, k3 /C,.
Equations (4) and (9) plus the force-balance condition
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and the constraints given in Egs. (1) and (2) constitute a
closed set that can be solved to determine the magnetic-
field and resistivity profiles. The iterative method em-
ployed is as follows.

(1) Assume that the resistivity profile is known (usually
a uniform profile with =1 is employed) and solve Eqgs.
(4), (1), and (2) using the Rayleigh-Ritz technique [9].

(2) With the current and magnetic-field profiles deter-
mined above calculate the pressure profile and local heat-
ing rate.

(3) Using the pressure and heating-rate profiles calcu-
lated above, solve Eq. (9) to determine a new resistivity
profile.

(4) Solve Egs. (4), (1), and (2) again using the resistivity
profile calculated above and repeat the procedure until
the incremental change of the Lagrange multipliers in
two successive iterations becomes less than a prescribed
value (10~ %-107%).

The Rayleigh-Ritz method employed to solve Egs. (4),
(1), and (2) consists in expanding the unknown function,
B in our case, as a linear combination of known localized
functions with undetermined coefficients. We employed
parabolic finite elements but other choices are possible.
The magnetic field is written as

n 3 . n 3 .
By=3 3 a4y, B,=3 3 ¢4}, (10)

i=1j=1 i=1j=1

where the a;; and c;; are unknown coefficients and, inside
each of the »n intervals, the ¢§-” are defined as

#"=2(u —0.5)0u—1),
' =au(1—u),

Y =2u(u—0.5),

with 0<u <1 and x=u/n—+(i—1)/n, i=1,...,n.
The 6n unknowns, 3n, a; and 3n c;, reduce to 2n +4
when we request continuity of the function and its first
derivative at the n —1 internal nodes. The value of the
function and its first derivative at the edge of the plasma
remain free, thus guaranteeing that natural boundary
conditions are automatically satisfied.

Substituting Eq. (10) into Eq. (4) and using the match-
ing conditions discussed above and the constraints given
in Egs. (1) and (2), we obtain a set of algebraic equations
to determine the 2n +4 unknown coefficients and the two
Lagrange multipliers. The derivatives dW /da; and
OW /dc;; were calculated numerically and the algebraic
system solved using Newton’s method. The code was
checked by recovering the analytic results of Ref. [6].
The results presented here were obtained with n =40.

Equation (9) is a second-order differential equation
which can be solved as a two-point boundary-value prob-
lem or as an initial-value problem. Since, in general, the
experimental values are better known at the center of the
plasma and physical arguments indicate that d /dx =0 at
x =0 we prefer to solve Eq. (9) as an initial-value prob-
lem. Introducing ¥y=d7/dx we can write Eq. (9) as two
first-order differential equations:
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FIG. 1. (a) Both components of the magnetic field, and (b)
both components of the current density for E=18.0,
A=1.4X1073,and p(1)=0.05.

dan _
dx ’
(11)
a_ 11,2 _24d8
dx ¥ x+p(‘]XB)" B dx

+AN (5B +2(jxBY] .
p

This system was solved using a standard fourth-order
Runge-Kutta method [10] with 7(0)=1 and ¥(0)=0.

In Figs. 1 and 2 we present the results obtained with
E=18.0, A=1.4X10"3, and p(1)=0.05. The value of
the pressure at the edge of the plasma was taken small
but finite to avoid numerical problems. Figure 1(a) shows
both components of the magnetic field and Fig. 1(b) both
components of the current density. Figure 2(a) shows the
resistivity and temperature profiles, and Fig. 2(b) the
pressure and u (u=j-B/B?) profiles.

The current and magnetic field profiles show the typi-
cal features of a RFP, including the reversal of B, and j,
near the edge. In this case we have F=B,(1)=—0.257
and ®=B,(1)=1.704. The resistivity is almost uniform
in the bulk of the plasma and increases sharply near the
edge. The temperature is simply T=7 273, It is interest-
ing to note that although the resistivity increases
significantly near the edge the current density does not
vanish. It is likely that including Ohm’s law as a local
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FIG. 2. (a) Resistivity and temperature profiles, and (b) pres-
sure and u(u=j-B/B?) profiles for E=18.0, 4 =1.4X1073,
and p(1)=0.05.

constraint in the minimization will result in a significant
reduction in the edge current [4]. The u profile is max-
imum at x =0 and decreases towards the edge, as ob-
served in the experiments, but does not become zero.
The pressure profile has a bell-like shape with dp /dx =0
at both x =0and 1.

The results presented above are encouraging and show
that it is indeed possible to determine minimum-
dissipation states employing a resistivity which is con-
sistent with the resulting current and magnetic-field
profiles. There are, however, a number of features that
could be added to improve the model. These include
toroidal effects, finite flow velocity, additional constraints
(i.e., energy balance), and nonuniform Z ;. Another in-
teresting task would be to extend the method to the two-
dimensional (2D) case and calculate the mean fields and
the fluctuations corresponding to minimum-dissipation
states employing a resistivity profile that depends on both
the temperature and the fluctuations.

To conclude, we note that, although a classical temper-
ature dependence was assumed for the resistivity and
heat conductivity, with a multiplying factor that ac-
counts for anomalous heat transport, other dependences
can easily be considered by modifying Eq. (9). This opens
the possibility of performing systematic studies where
different scaling laws are employed and the results com-
pared with the experimental observations.
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